Выберите тематику

Журналы / Электронные журналы

Книги / Электронные книги

Бичегкуев М.С., Олисаев Э.Г. О наибольшем и наименьшем значениях квадратичной функции



с.42-53

Научная статья 5.8.2.   УДК: 372.851   DOI: 10.47639/0130-9358_2023_5_42

 

М.С. Бичегкуев, д-р физ.-мат. наук,

СОГУ им. К.Л. Хетагурова (Владикавказ),

bichegkuev@yandex.ru

Э.Г. Олисаев, канд. физ.-мат. наук,

СОГУ им. К.Л. Хетагурова (Владикавказ),

eolisaev@yandex.ru

 

Аннотация: в статье рассматриваются задачи о числе точек, в которых квадратичная функция, а также приводящиеся к ней функции принимают наибольшее или наименьшее значения.

 

Ключевые слова: квадратичная функция, наибольшее значение функции, наименьшее значение функции, точки минимума и максимума, промежуток монотонности функции, модуль действительного числа.

 

 

ОПИСАНИЕ НА АНГЛИЙСКОМ ЯЗЫКЕ:

 

About the greatest and minimum values quadratic function

 

M.S. Bichegkuev, ShiD (Phys&Math),

NOSU named after

K.L. Khetagurov (Vladikavkaz),

bichegkuev@yandex.ru

E.G. Olisaev, PhD (Phys&Math),

NOSU named after

K.L. Khetagurov (Vladikavkaz),

eolisaev@yandex.ru

 

Abstract: the article deals with problems on the number of points at which the quadratic function, as well as the functions reduced to it, take the largest or smallest values.

 

Keywords: quadratic function, maximum  value of a function, minimum value of a function, minimum and maximum points, monotonicity interval of a function, modulus of a real number.

 



Список источников

1. Бичегкуев М.С., Олисаев Э.Г. Сумма модулей и уравнение отрезка числовой пря-мой // Математика в школе. 2020.  № 7. С. 39–52.

2. Бичегкуев М.С., Олисаев Э.Г. Наименьшее и наибольшее значения функции в зада-чах с параметром // Математика в школе. 2022.  № 8. С. 8–15.

3. Голубев В.И. Решения сложных и нестандартных задач по математике. М.: ИЛЕК-СА, 2020. 252с.

4. Козко А.И., Панферов В.С., Сергеев И.Н., Чирский В.Г. Задачи с параметрами, сложные и нестандартные задачи. М.: МЦНМО. 2016. 232с.

5. Протасов В.Ю. Максимумы и минимумы в геометрии (Серия: «Библиотека “Мате-матическое просвещение”»). М.: МЦНМО, 2005. 56 с.

6. Тихомиров В.М. Рассказы о максимумах и минимумах. – 2-е изд., исправленное. М.: МЦНМО, 2006. 200 с.

7. Шестаков А.С. ЕГЭ 2016. Математика. Задачи с параметром. Задача 18 (профиль-ный уровень). – М.: МЦНМО, 2016. 240 с.

 

Статья поступила в редакцию  13.12.2022

Принята к публикации  31.03.2023


Яндекс.Метрика